楊家維ig的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列必買單品、推薦清單和精選懶人包

另外網站余美華2023 - numkor.online也說明:痴男怨女(1964)- 林家聲、南紅、張清、余美華、何少雄、李亨粵語長片無敵楊家將-于素秋林家聲靚次伯半日安陳好逑余美華曾任2018年德國舞蹈平台評審、諾伊斯夏日計畫 ...

國立臺灣科技大學 設計系 陳建雄所指導 楊家維的 行動訂票系統對話介面之資訊呈現模式與輸入方式之設計研究 (2021),提出楊家維ig關鍵因素是什麼,來自於對話式介面、聊天機器人、行動訂票、對話式商務、心智模式、使用者介面設計。

而第二篇論文長庚大學 電子工程學系 賴朝松、楊家銘所指導 陳琮誠的 二維材料在氣體感測器和光激發突觸元件之探討 (2019),提出因為有 石墨烯、紫外光、氣體感測器、硒氧化鉍、光電突觸元件的重點而找出了 楊家維ig的解答。

最後網站肯亞馬拉松2023 - bulbul.pw則補充:Learn English from me but in a fun way ok?facebook搜尋:楊家成MrYang 肯亞 ... 莎皮塞維爾【 加入莎皮的專屬會員】 【 莎皮的IG】 【 莎皮的FB】 【 莎皮公開群Di…

接下來讓我們看這些論文和書籍都說些什麼吧:

除了楊家維ig,大家也想知道這些:

楊家維ig進入發燒排行的影片

結合黃氏兄弟頻道成立四週年的契機,瑋瑋親自作詞作曲推出了第七首單曲、同時也是第一首全創作單曲《世界再大你擁有我》,道盡四年來的心路歷程與點點滴滴。
溫暖卻又讓人沸騰的抒情搖滾曲風,結合對粉絲、觀眾、哲哲一路陪伴的無限感謝;就像是歌詞「Hello~世界再大你擁有我」所傳達,不論你是朋友、家人、情人、還是室友,只想對你說「就算世界很大,你依然擁有我」,透過自己的陪伴來回應數不盡的感動和感謝。
-
MV 抽獎活動
活動時間:4/30 20:00 - 5/31 23:59止 (共一個月)
參加方式:請觀眾於MV底下留言
「我想對__說, #世界再大你擁有我+(一段想說的話)」並且分享、按讚影片,留下你的信箱,記得@要改國字的「小老鼠」唷!
抽獎獎品:
MV觀看達50萬— 簽名鑰匙圈 (每款2名,共4名)
MV觀看達100萬 — 簽名抱枕 (4名)
MV觀看達150萬 — 錄音(雲端共享人人有獎)
MV觀看達200萬 — 視訊通話 (4名)
-

⭐ 音樂製作

發行 Published : CAPSULE
監製 Executive Producer:施正容 Lexi
製作統籌 Line Producer:雷淑雯 Leilei

演唱 Lead Vocal:瑋瑋 / 黃挺瑋 Wei
作詞 Lyricist:瑋瑋 / 黃挺瑋 Wei
作曲 Composer:瑋瑋 / 黃挺瑋 Wei
製作人 Produced : 張暐弘 Hoong
編曲 Arranger:張暐弘 Hoong
配唱製作人 Vocal Produced : 張暐弘 Hoong
和聲編寫 Backing Vocal Arranger : 張暐弘 Hoong
錄音師 Recording Engineer : 張暐弘 Hoong
錄音室 Recording Studio : 原音兄弟
混音師 Mixing Engineer : 陳禹丞 Nick Chen
混音錄音室 Mixing Studio : 原音兄弟
母帶後期工程師 Mastered : 張暐弘 Hoong
母帶後期錄音室 Mastering Studio : 原音兄弟
⭐ MV製作
主演 -哲哲、瑋瑋
導演 Director / 邱晧
監製 Executive Producer / 鍾嘉妤、施正容

特別演出 / 溫妮
經紀執行 / 小㚬
妝髮 / 芝芝
特別演出 / 孫子涵
經紀 / Miki


製片 Producer / 鍾嘉妤
製片助理 Production Assistant / 楊蕙瑄

攝影師 Director of Photography / 魏祐謙
二機攝影師 Additional Camera / 高爾賢
攝影大助理 Assistant Camera / 蔡季澄
攝影助理 2nd Assistant Camera / 陳偉勝
劇照側拍 Photographer / 王建中
燈光師 Gaffer / 彭嘉慶
燈光助理 Best Boy Team / 萬又銘、曾鈺展
造型統籌 Stylist / 陳麒安
造型助理 Stylist Assistant /曾芊菱、黎羿伶
化妝 Makeup / 鍾其甫、孟孟
髮型 Hair / Ivy

美術 Art Director / 林巧筑
美術助理 Art Assistant / 褚衡、楊蕎瑜、湯佳芳
演員、樂手老師Talents /趙偉傑、梁賢玟、古奧、小加、米寶、dd、小小鄔

剪接 Editor / 魏祐謙、邱晧
調光 TC / 魏祐謙
字體設計 Typography / 高玉珍
創作者夥伴 Buddy - 王希武 / 古書豪 / 蔡宜廷 / 黃子洋 / 張思文

道具協力-森手木工MORiii :http://www.moriii.com.tw 、麥克兄弟數位工作室
場地協力 - 合拍所在
器材協力 - 乒乓影像器材

特別感謝
城中牙醫/PURIST
龜記茗品 / BODYTALK / 上友食品 / 天母竹林上禾便當 / 洪紹華
小哈 / 小宇 / 蘇菲 / 蘇子茵 / 李依珊 / 王宇君 / PeiHan / Winnie
謝婧辰 / 劉冠怡 / 郭宥 / Tasha / May / Lexi / 吉兒 / Alan / 曉君 / Nicole
張惟瑀 / 邱懷慧 / Brenda / 林維軒 / 安安 / 楊家豪 / Miko / 吳家揚

製作Production / CAPSULE

⭐ 行銷整合 - CAPSULE
跨媒體公關宣傳統籌 Media PR Promotion:杜宗祐 Oscar
單曲行銷統籌 Social Media Promotion:雷淑雯 Leilei
宣傳策劃與執行 Marketing Executive : 雷淑雯 Leilei / 杜宗祐 Oscar / 游采芬 Donna / 許永昕 Queena / 王希武 Shawn

WINNI溫妮 YouTube 頻道: https://youtube.com/channel/UCngJawDcrvMgdiyCe8y7dBg
Cover WINNI YouTube 頻道: https://youtube.com/channel/UCKPF1g84yaYpOtO2syQ6k1g

黃氏兄弟全新全創作單曲《世界再大你擁有我》
專屬聽歌連結 :https://jsj.lnk.to/JYy7LKjP
各平台連結
KKBOX:► https://bit.ly/3xGfs9N
MyMusic:► https://bit.ly/3gNvR5W
friDay:► https://bit.ly/2R3hyQ2
LINE MUSIC:►https://bit.ly/2R95E76
Apple Music:► https://apple.co/3vqNT27
Spotify:► https://spoti.fi/2S83B3L
QQ音樂:►https://y.qq.com/n/ryqq/albumDetail/000ujy8k0UF3md
網易雲音樂:►https://music.163.com/#/album?id=126530461
咪咕音樂:► https://music.migu.cn/v3/music/album/1138354164
街聲:►https://streetvoice.com/huangbrothers/songs/644220/

🎓畢業108系列單曲🎓
EP.01【我的新座位】MV 👉 https://youtu.be/ZWYFHrJj4dI
EP.02【不專心】MV 👉 https://youtu.be/0GzLgn2fgcI
EP.03【多想告訴你】MV 👉 https://youtu.be/BT2tg7QphVU

🔥2020年單曲
【專家模式】MV👉 https://youtu.be/x8AP-2aLEeE
【室友】MV👉https://youtu.be/kaP4JUyI0uc
【光 Light】MV👉https://youtu.be/VdULKZtwwH8

想成為下一個頂尖 YouTube 創作者嗎?歡迎加入【CAPSULE Academy】
http://bit.ly/2RtgPUv

【轉學兄弟】:https://reurl.cc/EOKnn
【兄弟互整】:https://reurl.cc/2K44n
【外婆家系列】:https://goo.gl/n82tCk
【兄弟對決】https://reurl.cc/yaQNl

IG 追蹤 👉 huangbrotherss
FaceBook 專頁 👉 https://goo.gl/UcZf4Y
訂閱我們 👉 https://goo.gl/pPGJbv

👉 兄弟倆日常;喜歡拍試吃、開箱、搞怪、整人影片、都市傳說、實驗、運動、黑暗料理(?)、TikTok、Vlog
( 呃....就是生活中想拍什麼就拍什麼www )

► 每週一、三晚上六點,週六早上十點發片!會不定時直播跟追加影片(一定要開鈴鐺收通知!)
► 追蹤臉書專頁、IG 關注我們動態
( 大家多多分享、按喜歡,你的支持是給我們最大的鼓勵 )

#黃氏兄弟 #新單曲 #世界再大你擁有我

行動訂票系統對話介面之資訊呈現模式與輸入方式之設計研究

為了解決楊家維ig的問題,作者楊家維 這樣論述:

隨著聊天機器人、即時通訊軟體普及的趨勢,提供了科技的發展可行性,改變了現代人互動的方式,加上產業需求的趨勢,促使許多產業往數位化的方向發展,透過對話式商務來增加與顧客的互動,提升服務與體驗的滿意度,其中在對話式訂票商務的體驗上,介面設計與使用操作體驗中,尚有改善調整的空間,因此本研究針對使用者在進行行動訂票系統之對話式介面中的操作進行研究,探討使用者在進行對話輸入與對話介面資訊呈現的使用偏好與操作差異。本研究共有兩個實驗,為(1)前導性實驗,透過讓使用者操作圖像化介面與對話式介面所造成的使用與需求感受,並透過訪談與分析了解使用者使用行動裝置時進行數位訂票偏好,並提出對話式介面的改善方向。接著

(2)驗證實驗,為根據前導性實驗中的研究結果出發,以縮短對話次數、加入圖像化介面之操作方式及改變資訊呈現方式為目標,提出不同於市面上之對話式介面操作方式,以兩種資訊呈現模式,分別為(1)無限長單頁式資訊呈現、(2)分頁式資訊呈現,與三種輸入方式(1)按鈕選單、(2)彈窗式選單、(3)下拉式選單進行實驗,總共設計出六款模擬對話式介面樣本。本研究結果顯示:(1)輸入方式中,建議使用「按鈕選單」的方式進行輸入,此方式能夠提升使用者的操作績效。(2)資訊呈現模式,建議採取「分頁式資訊呈現」,此方式會更新使用者心智模式,並在後續的對話上能夠提升介面操作的易用性與滿意程度。(3)縮短對話次數與新增防錯輸入

機制,能夠避免分神或是誤觸導致的輸入錯誤,減少錯誤對話的發生。(4)在對話輸入的過程中,避免非必要的對話動畫,會導致受測者的等待並增加其操作完成時間。(5)對話式介面設計應考慮到老手使用者之對話操作方式與情境,根據使用者的學習性,進而調整對話方式與情境。

二維材料在氣體感測器和光激發突觸元件之探討

為了解決楊家維ig的問題,作者陳琮誠 這樣論述:

指導教授推薦書口試委員會審定書誌謝.........................................................iii中文摘要......................................................ivAbstract......................................................vTable of Contents ..........................................viiList of Figures.....................

.........................ixList of Tables............................................xviiiChapter 1 Introduction........................................11.1 Properties of graphene....................................11.2 The Rise of Graphene Based Gas Sensor.....................11.3 The Challenge of

graphene gas sensor......................21.4 New 2D materials – Bi2O2Se................................31.5 Neuromorphic Computing and Optoelectronic Synapse.........41.6 Motivation and Organization of the Thesis.................5Chapter 2 Improvement of graphene-based acetone sensor by electrode s

pacing effect and UV illumination.................182.1 Introduction.............................................182.2 Sample preparation and analysis..........................202.3 Results and Discussion...................................232.4 Summary................................................

..30Chapter 3 Annealing effect on UV-illuminated Recovery in Gas Response of Graphene-Based NO2 sensors.......................423.1 Introduction.............................................423.2 Sample preparation and analysis..........................443.3 Results and Discussion....................

...............473.4 Summary..................................................56Chapter 4 Bidirectional All-Optical Synapses Based on 2D Bi2O2Se/Graphene Hybrid Structure for Multifunctional Optoelectronics .............................................694.1 Introduction..............................

...............694.2 Sample preparation and analysis..........................724.3 Results and Discussion...................................754.4 Summary..................................................90Chapter 5 Conclusion and Future Works.......................1115.1 Conclusion.................

.............................1115.2 Future Works............................................112References..................................................113List of FiguresChapter 1Figure 1-1. Sensitivity of graphene to chemical doping. (a) Concentration of chemically-induced charge carriers in sin

gle-layer graphene exposed to different concentrations of NO2. (b) Changes in resistivity caused by graphene's exposure to various gases diluted in concentration 1 ppm. [1.7]...................8Figure 1-2. (a) Graphene chemiresistors modified with functionalized triphenylene for the detection of dim

ethyl methylphosphonate gas. [1.8] (b) Graphene–polyaniline hybrid flexible sensor for the detection of ammonia gas. [1.9] (c) Reduced graphene oxide composited of tin oxide nanocrystals for the selective gas sensing. [1.10] (d) Gold-modified reduced graphene oxide for the detection of arsine gas. [

1.11]........9Figure 1-3. Layered crystal structure of Bi2O2Se with tetragonal (Bi2O2)n layers and Sen layers alternately stacked along the c axis. [1.19].................................................10Figure 1-4. Comparison between vonNeumann and neural network computing architectures. [1.20] ..

...........................11Figure 1-5. Schematic illustration of the PPF behavior of a biological synapse between a pre-synaptic neuron and a post-synaptic neuro. [1.23].......................................11Figure 1-6. (a)Schematics of a Ag2S inorganic synapse and the signal transmission of a b

iological synapse. (b)Change in the conductance of the inorganic synapse when the input pulses were applied with intervals of 20 s and 2 s. [1.26]...............12Figure 1-7. (a) Circuit and schematic representation of diagrams of a synaptic barristor composed of a vertically integrated WO3−x memris

tor and WSe2/graphene barristor. (b) Plots of PSC as a function of N while consecutively applying a series of potentiating spikes and depressing spikes at VG = 0, −20, or −40 V. (c) Plots of PSC as a function of time while applying spikes (VA = −1.0 V, VW = 10 ms, and Δt = 1 s) at VG = 0 V (left pan

el) and VG = −30 V (right panel). [1.30].........................13Figure 1-8. Optical architecture, band mechanism, transition from STP to LTP and long-term synaptic weight modulation of heterojunction transistors based on MoS2/PTCDA hybrid structure. (a) Optical device architecture schematic and b

and alignment of heterojunction. (b) EPSC of the MoS2/PTCDA transistor triggered by a pair of laser pulses. [1.33]...............................14Figure 1-9. (a) Schematic of a graphene device showing electron-trapping species adsorbed on the graphene surface (b) The linear dispersion relation char

acteristic of graphene. Upon UV irradiation, photo-generated holes recombine with the negatively charged adsorbates at the surface and consequently shift the Fermi level to higher energy. [1.36]...............................15Figure 1-10. The roadmap of thesis, ranging from Chapter 1to Chapter 5...

.................................................16Chapter 2Figure 2-1. Schematic of the gas sensing measurement system and an image of the sensor. [2.29] .................................32Figure 2-2. (a) Raman spectra and (b) UV-vis spectrometer of the monolayer graphene on the glass. [2.18]......

................33Figure 2-3. Relative resistances change of UV illumination on monolayer graphene resistive sensor. N.UV; no UV used during the whole measurement, S.UV; 5 min of UV in first step of nitrogen purge before acetone gas injection; A.UV; UV used in whole measurement. [2.18]..............

............................34Figure 2-4. Resistance to acetone exposure by the monolayer graphene sensors for IDE spacings of (a) 50 and (b) 400 µm for the “All UV” and “No UV” group. [2.29]...........................35Figure 2-5. (a) Time-dependent and (b) concentration-dependent gas response of t

he monolayer graphene sensor with IDE spacings of 50 and 400 µm for the “No UV” and “All UV” group. [2.29]........36Figure 2-6. Schematic plot on the mechanism of UV illumination induced molecular absorption and following acetone gas sensing behavior on graphene. [2.18]..............................

...37Figure 2-7. Time-dependent acetone response for different IDE gaps for the “All UV” and “Short UV” group. [2.29]................38Figure 2-8. The response of the monolayer graphene sensor with different spacings for the “All UV” and “Short UV” group. [2.29] ..................................

...........................38Figure 2-9. (a) Raman spectra and (b) maps of the intensity ratio of the 2D over the G peak (I2D/IG) for graphene on Au and glass. (c) Maps and (d) bar charts of the G band shift from the Raman analysis for samples with different spacings. [2.29].........39Figure 2-10. G

as response versus the glass area ratio curves in different acetone concentrations. The sensitivity versus the area ratio curve is shown in the inset. [2.29]....................40Chapter 3Figure 3-1. Schematic diagram of the gas sensor measurement system and graphene sensor. [3.53]..................

................57Figure 3-2. (a) Raman spectra of graphene treated at various RTA temperatures and (b) correlation map of the 2D and G peak positions in the graphene as functions of RTA temperature. The brown solid line referred to the strain limit (slope 2.45) and the brown dashed line referred to

the doping limit (slope 0.7). [3.53] .............................................................58Figure 3-3. (a) Hole concentration and mobility of graphene with RTA in N2 at various temperatures in the Hall measurement and (b) hole concentration versus mobility of graphene treated at differ

ent RTA temperature. [3.53]............................59Figure 3-4. AFM topographic image of (a) pristine graphene and annealed at (b) 200 oC, (c) 300 oC and (d) 400 oC. (e) PMMA coverage calculated in the imageJ software and roughness parameters Rq related to different RTA temperature from AFM ima

ges. [3.53]...............................................60Figure 3-5. AFM images analyzed in imageJ software: (a) pristine graphene and with annealing at (b) 200 oC, (c) 300 oC and (d) 400 oC. The red area could be referred to PMMA residues with a threshold value setting. [3.53]...................

...........61Figure 3-6. (a) Dynamic response versus time for the sensor treated at different RTA temperatures and NO2 gas concentrations of 1, 3 and 5 ppm, (b) absolute value of response and recovery change for the sensor treated at different RTA temperatures with the exposure of 1 ppm NO2, and (c)

schematic of the Fermi level of pristine graphene and p-doped graphene tuning by the NO2 molecules. [3.53]............................................62Figure 3-7. (a) The time response and (b) schematic plot of the surface reaction for the “G300” sensor to 1 ppm NO2 and UV illumination in the reco

very step. Dynamic response versus time for the device treated with RTA at different temperatures and exposure to various concentrations of NO2 with UV illumination during the recovery time. The illumination time is decided by the full recovery of the response of (c) the “G” device and (d) the “G300

” device. [3.53]........................................63Figure 3-8. The periods of 1 to 4 indicate the initial state, adsorption of NO2, pre-cleaning process and short term UV illumination, respectively. (a) The time response for the “G” and “G300” sensors exposed to different concentrations of NO

2 with proper UV illumination time for a full recovery. (b) Absolute value of the response change by the effect of RTA at 300oC and recovery change by the optimized UV illumination time. [3.53]...64Figure 3-9. Repeatability and stability studies of the graphene sensors exposed to 1 ppm of NO2.......

........................65Figure 3-10. Raman spectra of the pristine monolayer graphene before and after UV illumination for 3h.......................65Figure 3-11. (a) Dynamic response of the “G300” sensor expose to air and the concentration of NO2 from 50 to 500 ppb with complete recovery by UV il

lumination. (b) Gas response of sensor related to the concentration of NO2......................................66Figure 3-12. Gas responses of the “G” and “G300” sensors exposed to pure air, alcohol of 1 ppm, Acetone 1 ppm, NH3 of 5 ppm and NO2 of 1 ppm at room temperature..........................

........67Chapter 4Figure 4-1. CVD Synthesis and characterization of Bi2O2Se. (a) Schematic illustration of a CVD setup to synthesize Bi2O2Se nanoplates on mica substrate. (b) A representative AFM image of a single Bi2O2Se nanoplate with thickness of 9.6 nm. (c) Raman spectrum of Bi2O2Se with the ch

aracteristic A1g peak at 159 cm−1. (d) Schematic of layered Bi2O2Se crystal structure. Purple ball: Bi, Red ball: O, Yellow ball: Se. (e) Cross-sectional HAADF-STEM image of Bi2O2Se film with atomic model, corresponding to the schematic of crystal lattice..................................92Figure 4-

2. EDS mappings of elements for Bi, O, and Se at region from the cross-sectional TEM image............................93Figure 4-3. Atomically-resolved chemical mappings of Bi, O and Se in as-grown Bi2O2Se by STEM-EELS..............................94Figure 4-4. (a) The optical images of Bi2O2Se nano

sheets analyzed in ImageJ software. (b) The corresponding histograms of the Bi2O2Se grain size distributions..............................95Figure 4-5. The optical image of Bi2O2Se on silicon oxide substrate, indicating a successful implementation of the transfer method..............................

..........................96Figure 4-6. Illustration of the fabrication process for the hybrid device of Bi2O2Se/graphene structure..........................97Figure 4-7. The OM image and the simplified electrical circuit for the hybrid photodetector under light excitation. Positive and negative pho

toconductivity observed in Bi2O2Se/graphene hybrid devices by the illumination of 635 and 365 nm, respectively...98Figure 4-8. (a) Time-dependent current curves under light illumination of 635 nm for Bi2O2Se with the light intensity from 0.3 to 4 mW cm-2. (b) Dynamic photoresponse for the current an

d differential current of Bi2O2Se under 635 nm illumination. Region of I and II are represented to the effect of photoconductive and bolometric distinguished by the differential of current.......99Figure 4-9. Time-dependent current curves under light illumination of 365 nm for graphene with the ligh

t intensity from 0.6 to 4 mW cm-2.........................................................100Figure 4-10. The PPC (red curve) and the NPC (purple curve) observed from the photocurrent of Bi2O2Se under illumination of 635 nm and graphene under illumination of 365 nm light, respectively...............

..................................100Figure 4-11. Time-dependent current curves under light illumination of 635 and 365 nm for Bi2O2Se/graphene hybrid structure. NPC behavior can be found in the hybrid device under illumination of 365 nm with intensity of 0.6 mW cm-2. 101Figure 4-12. Relative cur

rent change of light illumination on graphene with different wavelength...........................101Figure 4-13. Photoresponsivity of Bi2O2Se/graphene hybrid photodetectors as a function of 365 and 635 nm power densities. .............................................................102Figure 4-

14. Dynamic photoresponses of Bi2O2Se/graphene hybrid structure under the wavelength of (a) 460, (b) 525, (c) 635 and (d) 770 nm in various intensities, respectively. (e) The photocurrent change related to the wavelength and power densities. ......................................................

.......103Figure 4-15. (a) Surface potential images of the Bi2O2Se/graphene heterostructures in dark and illuminated by different light wavelengths of (b) 635 and (c) 365 nm recorded by in situ AFM electrical nanotechnology. The scanning area and scan rate are 30 μm × 30 μm and 0.8 Hz, respectively.

(d) Schematics of the in situ KPFM analysis for Bi2O2Se/graphene heterostructures. (e) Surface potential difference derived from (a-c). (f) Illustration of energy band alignment between Bi2O2Se and graphene in dark and under illumination of (g) 635 and (h) 365 nm.................104Figure 4-16. (a)

Schematic of a biological synapse and Bi2O2Se/graphene optoelectronic synapse with optical stimuli at wavelengths of 635 and 365 nm for emulating excitatory and inhibitory behaviors, respectively. (b) Dependence of the EPSC and IPSC on the duration time by the 635 and 365 nm light illumination. The

change in (c) EPSC and (d) IPSC induced by the pair of presynaptic optical pulses with time interval (Δt) of 200 ms and pulse width of 100 ms. A1 and A2 represent the change in PSC at first and second spike, respectively. (e) Dependence of the PPF index on Δt between pairs of excitatory and inhibit

ory pulses. .............................................................105Figure 4-17. (a) EPSC with 625 nm light spiking at the frequencies of 1 and 10 Hz for the duration time of 6 s. (b) SRDP index of Bi2O2Se/graphene synaptic devices according to the illumination of 635 nm with frequencies

from 0.1 to 10 Hz....................106Figure 4-18. The post-synaptic current of Bi2O2Se/grpahene synaptic devices triggered by the different wavelength of (a) 460, (b) 525, (c) 635 and (d) 770 nm with a train of 20 light spikes. .............................................................107

Figure 4-19. The change of post-synaptic current response by stimulating of 635 nm light spikes with (a) the same duration time and irradiances ranging from 1.2 to 3.1 mW cm-2 and (b) the number of light pulse cycle.........................................108Figure 4-20. Analog channel PSC modulatio

n under 100 repeated light spikes of 635 nm (3.1 mW cm-2) and 20 repeated light spikes of 365 nm (0.3 mW cm-2) with the same width and interval time of 100 ms for emulating the LTP and LTD of biological synapse, respectively.................................................109Figure 4-21. Optoelectro

nic digital logic functions. (a) Schematic operation diagram for the logic gates by a synaptic Bi2O2Se/graphene photodevice. Two presynaptic driving inputs of 635 and 525 nm as optical input signals on input 1 and input 2, respectively and a modulatory spike of 365 nm is used to degrade the output c

urrent for switching between “AND” and “OR” logic gates. (b) The response in output current versus time corresponding to different input configurations. Light and dark of each independent optical input corresponds to digital 1 and 0. (c) The truth table and output current of the “AND” and “OR” logic

functions for the synaptic devices...........................110List of TablesChapter 1Table 1-1. Summary of sensing performances in different type of gas sensors. [1.5]............................................17Chapter 2Table 2-1. Comparison of acetone sensors based on graphene related material

s. [2.29].............................................41Chapter 3Table 3-1. Comparison of NO2 sensors based on graphene related materials. [3.53].............................................68